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Abstract estimation processes. It has been shown that given a
sufficient number of neurons in the hidden layer, a

A new method for the robust estimation of target GRNN can approximate a continuous function to an
orientation using measured radar cross section is arbitrary precision [10].
proposed. The method is based on a Generalized
Regression Neural Network (GRNN) scheme. The In this paper, the orientation of a cylindrical
network is trained by the FFT modulus of bistatic conducting target is estimated with a GRNN network
radar cross section data sampled at the receiver using radar cross section data. The definition of the
positions. The target value to be trained is the angle problem is shown in Figure 1, where a target is
between a defined target orientation and the incident illuminated by a number of transmitters/receivers at
wave. Results based on actual measurements are different angles of incidence. The orientation angle is
presented. defined as the angle between a preferred

direction specified on the target geometry and the
incident wave. The task is to find the orientation

INTRODUCTION angle by using a number of bistatic radar

measurements.
Accurate estimation of target orientation is essential
in range profiling schemes [1-4]. In such cases, the THE FORWARD PROBLEM
knowledge of target orientation can yield information
about the target-structure. The range profile itself, Consider a perfectly conducting cylinder of arbitrary
however, is quite sensitive to variations in target cross section shape, as shown in Figure 2, illuminated
orientation and cannot be the basis for such by a plane wave in free space. The cylindrical
estimation. A detailed tracking of object orientation is contour is denoted by C. For the TMz polarization,
therefore necessary. the electric field integral equation (EFIE) is given by

Attempts have been made to use artificial neural E' () = __k°Z°"J ,'oK" (21 _kop-_'l)d'1

networks (ANNs) for solving the inverse problem. Z 1 0

However, the proposed methods have not been able C

to exploit the fundamental advantages of neural where p and p' are the field and source points,

systems, whichare their speed and robustness. In respectively, and H( 2
) is the zeroth order Hankel

many instances, the problem formulation was fitted

into previously developed algorithms for network function of the second kind.

training [5, 6]. Nevertheless, successful methods
were developed for cases where a priori knowledge The above integral equations are solved numericallyof the target geometry is available [7]. Neural by the method of moments. Once the induced current

to k t h ae prrgegoventoy do wilable i. trart is calculated, the scattering echo width is given bynetworks have proven to do well in target

classification area. A spectral approach to radar target
classification using ANNs was proposed in [8]. -T = k0Z0 IK (pI)e jk(xcos0+ysin)d 12 (2)

The Generalized Regression Neural Network C
(GRNN) [9] is among radial basis networks and has
found applications in regression and function
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THE GRNN not be confused with the echo-width defined in (2).
The estimate (4) can be considered as a weighted

The Generalized Regression Neural Network belongs average of all the observed values, each being
to the family of radial basis neural networks. Radial weighted exponentially according to its distance from
basis networks require more neurons than standard X. It can be shown that this density estimator used in
feed-forward backpropagation networks, but they can estimating (3) asymptotically converges to the
often be designed in a fraction of the time it takes to underlying probability density function f(x,y) at all
train standard feed-forward networks. They work best points (x,y) at which the density function is
when many training vectors are available, continuous, provided that the spread parameter

a- = o(n) is chosen as a decreasing function of n.

Radial basis networks were previously used in field When a= is large, the estimated density function

estimation processes. It is shown that given a Whenoachs largate e stia n function

sufficient number of neurons in the hidden layer, a approaches a multivariate Gaussian function. For

GRNN can approximate a continuous function to an intermediate values of a', all values of Y' are taken

arbitrary precision. The GRNN is a memory based into account, but those corresponding to points closer
network, which provides estimates of continuous to X are weighted heavier. The estimate cannot
variables and converges tot he underlying optimal converge to poor solutions corresponding to local
linear or nonlinear regression surface. The network minima of the error criterion.
requires no prior knowledge of a specific functional
from between input and output. The appropriate form
is expressed as a probability density function that is TRAINING
empirically determined from observed data using
Parzen window estimation [11]. For this reason, it The sensors are assumed to be fixed with respect to
works very well with sparse data. The network is a the wave direction. The target is impinged upon by
one-pass learning algorithm and can generalize from transverse magnetic plane waves from different
examples as soon as they are stored. The structure of directions. To prepare the training data, a total of 10
the Network is depicted in Figure 3. equally spaced receivers are used.

It was found that the FFT modulus of the echo-width
Let x be a vector random variable of dimension t, patterns sampled at the receiver positions for angles
and y be a scalar random variable. Then f(x,y) is the

joint continuous probability density function of x and of incidence provided better generalization

y. Let X be a particular value of the random variable capabilities for the network, compared with the case
when the network was trained with the echo-widthx. The conditional mean ofy given X (regression ofy vector (amplitude and phase). Simulated bistaticon X) is given by echo-width was used for the training of the network.

f yf (X, y)dy The forward problem was solved using the method of

SI X] (moments. These calculations formed a 10 element

E[-Y •(3) input vector at every receiver for the network.

f f (X, y)dy Some noisy data created by displacing the receivers,
-• were added to the training data set to let the system

But the probability density function f(x,y) is not known a were added toth tin data se to l es e
priori. It may be estimated from a sample of observations of
x andy as proposed by Parzen as [9] used in training the network. The spread parameter

a_ was manipulated so that the network angular
_Y exp - estimation was sufficiently robust. The target value to

E[y IX] (4) be trained was the angle between the target
orientation and the incident wave.Sexp-

where RESULTS

In this section, the performance of the network will

Ci = LlXj - Xi [(5) be examined.

j=P The network was trained using the data described in
is the city block distance. Note that in (4), a" is the the previous section for the triangular shaped target
spread parameter of the density estimator, and should shown in Figure 1. To check the generalization power
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encountered by the network with all other parameters 01731-3010.
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Figure I- Problem set-up.
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x

Figure 2- A uniform plane wave impinging upon a perfectly conducting cylinder.
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Figure 3- The structure of GRNN.
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Figure 4- The GRNN estimates the orientation of the target shown

in Figure 1 by the concept of generalization.

105 cm
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Figure 5- A triangular cylinder of sides 10.5cm x 4.92cm x 10.5cm illuminated
by a 10 GHz TM' plane wave. The height of the cylinder is 40.8 cm.
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